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ABSTRACT

The literature regarding the use of multiple comparisons in

analysis of variance is reviewed. Three analytic premises provide

a framework for the discussion. It is argued that experimentwise

Type I error rate inflation can be serious, and that its influences

are often unrecognized in many ANOVA applications. It is noted that

both classical balanced omnibus and orthogonal planned contrast

tests inflate experimentwise error to an identifiable maximum.

Finally, it is suggested that significance test results are

overinterpreted in contemporary analytic practice, and that

researchers must also consider effect sizes and replicability or

invariance analyses when formulating interpretations.

Three canons to guide analytic practice are suggested. First,

it is suggested that omnibus hypotheses that are not of interest

or which cannot be interpreted should not be tested, since such

tests can distort the hypothesis tests that are of interest, as

illustrated with examples. Second, it is suggested that orthogonal

contrasts should be preferred over nonorthogonal contrasts, and

that when nonorthogonal contrasts must be used it may be necessary

to use a corrected testwise alpha level. Finally, it is suggested

that planned contrasts should be used in place of either omnibus

or unplanned hypothes4.6 tests. Two reasons why planned comparisons

are generally superior are presented. Use of planned comparisons

tends to result in more thoughtful research with greater power

against Type II error. Throughout the paper small data sets and

examples are employed to make the discussion concrete.



Empirical studies of research practice (Edgington, 1974;

Elmore & Woehlke, 1988; Goodwin & Goodwin, 1985; Willson, 1980)

indicate that the classical analysis of variance (ANOVA) methods

presented by Fisher (1925) several generations ago remain popular

with social scientists, notwithstanding withering criticisms of

some of these applications (Cohen, 1968; Thompson, 1986). Most

users of ANOVA-type methods (ANOVA, ANCOVA, MANOVA,

MANCOVA--hereafter labelled OVA methods) are aware that "A

researcher cannot stop his analysis after getting a significant f;

he must locate the cause of the significant F" for an omnibus test

(Huck, Cormier & Bounds, 1974). An omnibus test evaluates

differences across all groups in the way or effect as a set, and

has degrees of freedom equal to those available for the effect

(e.g., in a 4x3 design the omnibus test for the four-level "A" way

has 4-1 or 3 degrees of freedom). Gravetter and Wallnau (1985, p.

423) concur that "Reject Ho indicates that at least one difference

exists among the treatments. With j [means] = 3 or more, the

problem is to find where the differences are." Moore (1983, p. 299)

suggests that:

If we have statistical significance when we have

only two groups,, and thus only two means, we can

visually inspect the data to determine which group

performed better than the other. But when we have

three or more groups, we need to investigate

specific mean comparisons.

Many researchers employ unplanned (also called a posteriori
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or post hoc) multiple comparison tests (e.g., Scheffe, Tukey, or

Duncan) to isolate means that are significantly different within

OVA ways (also called factors) having more than two levels. As

Glass and Hopkins (1984, p. 368) note,

MC procedures are a relatively recent addition to

the statistical arsenal; most MC techniques were

developed during the 1950's, although their use in

behavioral research was rare prior to the 1960's.

Textbook authors tend to discuss unplanned comparison or

contrast procedures in a somewhat pejorative terms. For example,

Kirk (1984, p. 360) speaks of the use of unplanned comparisons as

"ferreting out significant differences among means, or, as it is

often called, data snooping." The following quotations are

additional representatives of this genre of views:

Techniques that have been developed for data

snooping following an over-all [significant omnibus]

test... are referred to as a posteriori or post,

hoc tests. (Kirk, 1968, p. 73)

The post hoc method is suited for trying out hunches

gained during the data analysis. (Hays, 1981, p.

439)

Post hoc comparisons, on the other hand, enable the

researcher tJ engage in so-called data snooping by

performing any or all of the conceivable comparisons
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between means. (Pedhazur; 1982, p. 305)

Prior to running the experiment, the investigator in

our example had no well-developed rationale for

focusing on a particular comparison between means.

His was a "fishing expedition"... Such comparisons

are known as post hoc comparisons, because interest

in them is developed "after the fact"--it is

stimulated by the results obtained, not by any prior

rationale. (Minium & Clarke, 1982, p. 321)

Post hoc comparisons often take the form of an

intensive "milking" of a set of results--e.g., the

comparison of all possible pairs of treatment means.

(Keppel, 1982, p. 150)

Post hoc comparisons are made in accordance with the

serendipity principle--that is, after conducting

your experiment you may find something interesting

that you were not initially looking for. (McGuigan,

1983, p. 151)

Planned (also called a priori or focused) comparisons provide

an alternative to the OVA user who is interested in isolating

differences among means. As Keppel (1982, p. 164) notes in his

excellent treatment, decisions about which unplanned or planned

comparisons to employ in OVA research are complex and not always
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well understood by researchers:

The fact that there is little agreement among

commentatols writing in statistical books and

articles concerning specific courses of action to be

followed with multiple comparisons simply means that

the issues are complex, and that no single solution

can be offered to meet adequately the varied needs

of researchers. Consequently, you should view the

situation... with a realization that you must work

the problem out for yourself.

The purpose of the present paper is to acquaint the reader with

some of these complex issues.

Specifically, it is argued that planned comparisons (as

against unplanned comparisons and certainly as against omnibus

tests involving comparisons across more than two groups) should be

employed more frequently in OVA research. And the relative utility

of orthogonal (i.e., perfectly uncorrelated) contrasts as against

nonorthogonal or correlated comparisons is evaluated. However,

prior to presenting these views as three general canons for

analytic practice, a context for discussion is established by first

explicating three analytic premises.

Three Premises Regarding Analytic Practice

1. Experimentwise error inflation can be a serious problem, and
classical unplanned tests were developed to control inflationof experimentwise error rates.

Most contemporary researchers recognize that

t- -tests pe/formed on all possible pairs of means
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involved in the E-test... (to) reveal where

significant differences between means lie... is

quite unacceptable methodology. The t-test was not

designed for this use and is invalid when so

applied... In spite of the patent invalidity of

t-- testing following a significant i -ratio in the

analysis of variance, or multiple t-testing in lieu

of the analysis of variance, this method has often

been and continues to be used. (Wass & Stanley,

1970, p. 382)

However, not all researchers understand the basis for these

conclusions. The rationale for the conclusions involves the control

of experimentwise Type I error rate. P. related rationale and the

experimentwise error rate problem underlie the use of unplanned

comparisons, so the concept of experimentwise error rate merits

some discussion.

When a researcher conducts a study in which only one

hypothesis is tested, the Type I error probability is the nominal

alpha level selected by the researcher, i.e., often the 0.05 level

of statistical significance. The probability of making a Type I

error when testing a given hypothesis is called the testwise (TW)

error rate. Experimentwise (EW) error rate refers to the cumulative

probability that one or more Type I errors were made anywhere in

the full set of all hypothesis tests conducted in the study. In the

case of a study in which only one hypothesis is tested, the

testwise error rate exactly equals the experimentwise error rate.
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However, when several hypotheses are tested within a single

study, the experimentwise error rate may not equal the nominal

testwise alpha level used to test each of the separate hypotheses.

If all hypotheses are perfectly correlated, then and only then will

there be no inflation of experimentwise error rate, because in

actuality only one hypothesis is really being tested. If the

hypotheses (e.g., the dependrInt variables) are at all uncorrelated,

then there will be at least some inflation of the experimentwise

error probability (BWp). The inflation is at its maximum when the

hypotheses are perfectly uncorrelated.

Witte (1985, p. 236) provides an analogy that may clarify why

this is so:

When a fair coin is tossed only once, the

probability of heads equals 0.50--just as when a

single t test is to be conducted at the 0.05 level

of significance, the probability of a type I error

equals 0.05. When a fair coin is tossed three times,

however, heads can appear not only on the first toss

but also on the second or third toss, and hence the

probability of heads on at least one of the three

tosses exceeds 0.50. By the same token, when a type

I error can be committed not only on the first test

but also on the second or third test, and hence the

probability of committing a type I error on at least

one of the three tests exceeds 0.05. In fact, the

cumulative probability of at least one type I error
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can be as large as 0.15 for this series of three t

tests.

This coin flip example illustrates a worst-case inflation of

experimentwise error (analogized as the flip of a head--H), because

the results of each flip are perfectly uncorrelated with previous

results (the coin presumably being unaware of or unaffected by its

previous behavior). Table 1 illustrates that although the

probability of a H on each flip or a fair coin is 50%, the

probability of one or more heads over three flips is 87.5%.

INSERT TABLE 1 ABOUT HERE.

In fact, as Thompson (1988c) notes, the experimentwise error

rate in a study ranges somewhere between the nominal testwise alpha

level (when only one test is conducted or all hypotheses are

perfectly correlated) and (1 - (1 - testwise alpha) raised to the

power of the number of hypotheses tested (when more than one test

is conducted and the hypotheses are perfectly uncorrelated). Love

(1988) presents the proof underlying the formula for estimating

maximum inflation of experimentwise Type I error. As an example

involving estimation of experimentwise error rate, if nine

hypotheses were each tested at the 0.05 level in a single study,

the experimentwise error rate would range somewhere between 0.05

and 0.37. Table 2 illustrates other calculations of maximum EW

error rates for various research situations.

INSERT TABLE 2 ABOUT HERE.
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Unplanned comparisons incorporate a correction (Games, 1971a,

1971b) that minimizes the inflation of experimentwise error rate

that would otherwise accrue from conducting multiple hypothesis

tests in a single stmdy, especially given that omnibus hypotheses

have already been tested. As Horvath (1985, p. 223) notes,

"Performing a multitude of comparisons between the treatments

raises the spectre of an increased overall probability of a Type

I error. Post F-test procedures must include some accommodation for

this danger." As Kirk (1984, p. 360) explains,

The principal advantage of this multiple comparison

procedure over Student's t is that the probability

of erroneously rejecting one or more null hypotheses

doesn't increase as a function of the number of

hypotheses tested. Regardless of the number of tests

performed among E means, this probability remains

equal to or less than alpha for the collection of

tests.

Snodgrass, Levy-Berger and Haydon (1985, p. 386) note that:

The post hoc tests for such multiple comparisons all

adjust, to one degree or another, for the increase

in the probability of a Type t error as the number

of comparisons in increased. They differ in the

degree to which the probability of a Type I error is

reduced.

Various authors discuss which tests are more conservative in this

adjustment and which are more liberal. The treatment by Keppel and
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Zedeck (1989, pp. 172-180) is especially thoughtful.

2. Balanced classical factorial OVA and planned orthogonal
contrasts both inflate experimentwise error rates to their
maximums.

Experimentwise error rate is at a maximum when the hypotheses

tested within an experiment are orthogonal or uncorrelated. For

example, the tests of all possible omnibus hypotheses in a

factorial multi-way ANOVA (callf.xl a "factorial" analysis) with

equal numbers of subjects in each cell (called a "balanced" design)

are all perfectly uncorrelated. This is why the sums of squares

(SOS) for each effect plus the error SOS add up to exactly equal

the SOS total. Thus, in a 3x4 ANOVA in which the one two-way

omnibus interaction and both main effect omnibus hypotheses are

tested at the 0.05 level, the experimentwise error rate would be

about 0.14 (1 - (1 - .05)3 = 1 - .953 = 1 - .8574 = .1426).

Very few researchers and even fewer textbook authors

consciously recognize that inflation of experimentwise occurs in

classical OVA methods testing omnibus effects prior to the use of

unplanned comparisons. An exception is the textbook written by

Glass and Hopkins (1984, p. 374), which acknowledges this dynamic

in a footnote. Miller (1966, 1977) also thoroughly explores these

issues. The failure to consciously recognize these dynamics can

doubtless be traced in some measure to paradigm influences

(Thompson, 1989b).

As defined by Gage (1963, p. 95), "Paradigms are models,

patterns, or schemata. Paradigms are not the theories; they are

rather ways of thinking or patterns for research." Tuthill and
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Ashton (1983, p. 7 note that

A scientific paradigm can be thought of as a

socially shared cognitive schema. Just as our

cognitive schema provide us, as individuals, with a

way of making sense of the world around us, a

scientific paradigm provides a y oup of scientists

with a way of collectively making sense of their

scientific world.

But scientists usually do not consciously recognize the

influence of their paradigms. As Lincoln and Guba (1985, pp. 19-

20) note:

If it is difficult for a fish to understand water

because it has spent all its life in it, so tt is

difficult for scientists... to understand what their

basic axioms or assumptions might be and what impact

those axioms and assumptions have upon everyday

thi'ling and lifestyle.

Even though researchers are usually unaware of paradigm influences,

paradigms are nevertheless potent influences in that they tell u,

what we need to think about, and also the things about which we

need not think. As Patton (1915, p. 9) suggests,

Paradigms are normative, they tell the practitioner

what to do without the necessity of long existential

or epistemological consideration. But it is this

aspect of a paradigm that constitutes both its

strength and its weaknesses--its strength in that it

10
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makes action possible; its weakness in that the very

reason for action is hidden in the unquestioned

assumptions of the paradigm.

Both factorial classical OVA (testing omnibus hypotheses) and

planned orthogonal contrasts maximally inflate experimentwise

error. More researchers need to become cognizant of both realities.

The propensity of many researchers to invariably conduct factorial

analyses (and thereby to maximally inflate EW error) is

particularly disturbing when researchers test omnibus hypotheses

about which they do not care or which they feel they cannot

interpret, as perhaps in a five-way omnibus interaction test.

Some researchers always test even omnibus effects that are not

of interest because they naively believe that such analyses always

increase the probability of detecting statistically significant

effects on the omnibus hypotheses that are of interest. This can

indeed happen, as illustrated in Table 3. The table first presents

results for a hypothetical study in which the researcher is really

only interested in the three main effects. For the same data these

three tests of interest become statistically significant when the

researcher tests the four omnibus interaction hypotheses even

though these hypotheses were presumed to not be of interest.

INSERT TABLE 3 ABOUT HERE.

Unfortunately, it is also possible that testing omnibus

hypotheses that are not of interest can make effects that are the

basis of the research become nonsignificant. Table 4 illustrates

11

14



how factorial versus nonfactorial analysis of the same data might,

for example, yield different conclusion regarding the three main

effects in the illustration.

INSERT TABLE 4 ABOUT HERE.

These considerations suggest an important guideline for

practice for researchers who overcome paradigm influences:

I. Given that testing omnibus hypotheses not of
interest can affect the results for the
hypotheses actually of substantive interest, and
given that maximal inflation of experimentwise
error occurs in balanced factorial analysis, teat
only the model of genuine interest. Do not test
omnibus hypotheses that are not of interest or
which cannot be interpreted.

It is an ironic tribute to the power of paradigm influences that

the same researchers who consider inflation of experimentwise error

rate as one rationale for multivariate statistics (which it is--

Fish, 1988) and therefore use multivariate statistics are often

somehow blind to the similar inflation of experimentwise error that

occurs in classical factorial OVA.

3. statistical significance tests are grossly influenced by sample
size, and significance considerations should not be primary
determinants of analytic choices.

As is the case for other parametric methods, subsumed as

special cases of canonical correlation analysis (Thompson, 1988a),

statistical significance tests can be employed to test a null

hypothesis that there is zero effect size for a given hypothesis.

The propensity to overiiiterpret significance tests continues,

notwithstanding several decades of effort "to exorcise the null

12
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hypothesis" (Cronbach, 1975, p. 124). Thompson (1989a, p. 66) notes

that

few statistical procedures have caused more

confusion within the research community than

statistical significance testing... Because

statistical significance is largely an artifact of

sample size, significance decisions... must be

interpreted in the context of sample size.

Rosnow and Rosenthal (1989, p. 1277) comment on contemporary

overemphasis on significance tests:

It may not be an exaggeration to say that for many

PhD students, for whom the .05 alpha has acquired an

almost ontological mystique, it can mean joy, a

doctoral degree, and a tenure-track position at a

major university if their dissertation R is less

than .05.... [But] surely, God loves the .06 nearly

as much as the .05 [level].

Thompson (1987a) explores the consequences of these problems.

Even sophisticated authors of prominent textbooks are sometimes

not quite sure what role significance tests should play in

multivariate analysis (Thompson, 1987b, 1988d), though doctoral

students may be disproportionately susceptible to excessive awe

for significance tests (Eason & Daniel, 1989; Thompson, 1988b).

Recent important treatments of these issues are also offered by

Huberty (1987) and by Kupfersmid (1988).

Researchers who have had the fortunate experience of working
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with large samples (cf. Kaiser, 1976) soon realize that virtually

all null hypotheses will be rejected, since "the null hypothesis

of no difference is almost never exactly true in the population"

(Thompson, 1987a, p. 14). As Meehl (1978, p. 822) notes, "As I

believe is generally recognized by statisticians today and by

thoughtful social scientists, the null hypothesis, taken literally,

is always false." Thus Hays (1981, p. 293) argues that "virtually

any study can be made to show significant results if one uses

enough subjects."

Presume that a researcher was working in the Houston school

district, and analyzed data involving swe of the district s

200,000 students. Perchance the researcher decided to compare the

mean IQ scores of 12,000 students located in one zip code with the

mean IQ of the 188,000 remaining students residing in other zip

codes. Since the t distribution approaches the Z distribution as

sample size approaches infinity, researchers use the Z distribution

to tests mean differences with large samples. These calculations

are reported in Table 5.

INSERT TABLE 5 ABOUT HERE.

The mean IQ (100.15, 0=15) of the 12,000 students residing

in the zip code of interest differs to a statistically significant

degree (Zcalc = 2.12 > Zcrit = 1.96, R<.05) from the mean (99.85,

SD=15) of the remaining 188,000 students. The less thoughtful

researcher might suggest to school board members that special

programs for gifted students should be erected throughout the zip

14
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code of the 12,000 students, since they are "significantly"

brighter than their compatriots.

Alternatively, the more thoughtful researcher in such a

situation would note that the standardized difference in these two

means (.3/15 = 0.02) is trivial. The difference of means (.3 =

one-third of one IQ point) is also substantially smaller than one

standard error of an IQ measure with a reliability coefficient of

0.92, i.e., SEM = SD*((3.-r)**.5) = 4.24. Such a thoughtful

researcher would be reticent to extrapolate policy recommendations

from every statistically significant result.

These considerations suggest that researchers out to interpret

results from a canonical analysis by considering significance test

results and effect size (Huberty, 1987), or by interpreting

significance in the context of sample size (i.e., at what smaller

sample size would this result have been no longer significant?--

Thompson, 1989a), or by conducting analyses that investigate the

replicability of results (Thompson, 1989c). Replicability analyses

include the cross-validation logics discussed by Thompson (1984,

pp. 41-47, 1989c), or variants of bootstrap (Diaconis & Efron,

1983; Efron, 1979; Lunneborg, 1987, in press) or jackknife (e.g.,

Crask & Perreault, 1977; Daniel, 1989) methods.

Again, it is ironic that researchers who are blinded by the

paradigm influences which create an excessive reliance on

significance tests are often hoisted on their own petards. The

researcher desirous of statistically significant effects for

substantive main and interaction effects will quite reasonably

15
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employ the largest sample possible so as to achieve the hoped-for

results. Regrettably, large samples that tend to yield significance

for substantive tests also tend to yield statistically significant

results leading to rejection of method assumption null hypotheses,

as in the test of equality of dependent variable variances across

groups required by the ANOVA homogeneity of variance assumption.

Two Types of Planned Comparislns:

grthminAlmargugNonorthogonal Contrasts,

Orthogonal Contrasts Defined

Planned comparisons are the alternative to unplanned

comparisons for researchers who wish to isolate differences between

sets of specific means. Pedhazur (1982, chapter 9) and Loftus and

Loftus (1982, chapter 15) provide valuable explanations of these

methods. Various types of planned comparisons can be used,

including both orthogonal and non-orthogonal planned comparisons.

Planned comparisons typically involve weighting data by sets of

"contrasts" such as those presented by Thompson (1985) or the

contrasts presented in Table 6. Other types of contrasts, those

which test for trends in means, are provided by Fisher and Yates

(1957, pp. 90-100) and by Hicks (1973) for various research

designs.

INSERT TABLE 6 ABOUT HERE.

Contrasts are typically developed to sum to zero, as do all

five contrasts presented in Table 6. Contrasts are uncorrelated or

orthogonal (and the hypotheses they represent likewise) when the

16
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contrasts each sum to zero and when the cross-products of each pair

of contrasts all sum to zero also. It can be demonstrated that

these conditions are sufficient to yield perfectly uncorrelated

variables. One formula for the Pearson product-moment is:

SUMxy ((SUMx * SUMy)/N)

((SUM SQUARED X'S -((SUMx)/N))(SUM SQUARED Y'S -((SUMO/N)))**.5

Consider only the numerator of the expression. By definition, the

sum of the cross-products (SUMxy) is zero. Since by definition both

contrasts also sum to zero (SUMx = SUMy = 0), SUM; * SUM equals

zero, and N into zero will also equal zero. Since zero (SUMxy) minus

zero (((SUMx * SUI4y)/N)) equals zero, the numerator of the

expression is zero. Since any number divided into zero is zero, r

will be zero, regardless of the divisor.

The contrasts presented in Table 6 are all uncorrelated, based

on these requirements. Planned contrasts like those in Table 6 can

be employed in a regression analysis in the manner illustrated by

Thompson (1985) and as explained by Pedhazur (1982). The required

computer cards for this case are presented in Appendix A.

The number of orthogonal planned comparisons always equals the

number of degrees of freedom for a given effect. As Hays (1981, p.

425) notes,

Each and every degree of freedom associated with

treatments in any fixed-effects analysis of variance

corresponds to some possible comparison of means.

The number of degrees of freedom for the mean square

between is the number of possible independent (i.e.,

17
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orthogonal] comparisons to be rade on the means.

The Case for Orthogonal Contrasts

Most researchers believe that orthogonal planned comparisons

have special appeal. Kachigan (1986, p. 310) notes that:

The importance that we place on a set of orthogonal

comparisons is that both of these [individual

testwise and experimentwise] significance levels are

known to us... On the other hand, when we deal with

sets of unplanned non-orthogonal comparisons, these

probabilities are not generally available to us,

because of the unplanned nature of the comparisons,

and because of the non-independence among them.

Keppel (1982, p. 147) suggests that:

The value of orthogonal comparisons lies in the

independence of inferences, which, of course, is a

desirable quality to achieve. That is, orthogonal

comparisons are such that any decision concerning

the null hypothesis representing one comparison is

uninfluenced by the decision concerning the null

hypothesis representing any other orthogonal

comparison. The potential difficulty with

nonorthogonal comparisons, then, is interpreting the

different outcomes. If we reject the null hypotheses

for two nonorthogonal comparisons, which comparison

represents the "true" reason for the observed

differences?

18
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Of course, orthogonal contrasts applied to balanced designs

yield nonoverlapping sums of squares that exactly add to the total

sums of squares, just as classical OVA yields uncorrelated or

nonoverlapping sum of squares for omnibus tests. It is this

"computational simplicity" (Cohen, 1968, p. 440) of orthogonal

omnibus tests that led, in part, to the widespread popularity of

OVA methods in the era prior to the widespread availability of

computers. So another appeal of orthogonal contrasts is that these

analyses are analogous in their characteristics to the results in

popular omnibus tests.

In summary, using orthogonal contrasts has at least three

advantages. First, the exact, testwise and experimentwise error

rates are both known to us. Second, interpretation tends to be

facilitated since equivocal or ambiguous results are less likely.

And third, the logic underlying findings can be more readily

generalized to the practice in popular omnibuE, OVA applications

using balanced designs, since classical omnibus tests in such cases

are also perfectly uncorrelated.

The Case for onortho onal Contrasts

Some researchers do not believe that planned comparisons

should necessarily be orthogonal, For example, Winer (1971, p. 175)

argues that, "In practice the comparisons that are constructed are

those having some meaning in terms of the experimental variables;

whether these comparisons are orthogonal or not makes little or no

difference." Similarly, even though Cohen and Cohen (1975) called

orthogonal "planned comparisons... the most elegant multiple
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comparison procedure [with] good power characteristics," they noted

orthogonal contrasts can "only infrequently be employed in

behavioral science investigations because the questions to be put

to the data are simply not usually independent" (p. 158).

The primary rationale for using nonorthogonal contrasts, then,

is substantive. Since the number of possible orthogonal contrasts

for an effect equals the degrees of freedom for the effect, we may

not have available enough orthogonal contrasts to address all the

issues of genuine substantive interest. Furthermore, we may be

forced by orthogonality constraints to test hypotheses that are not

particularly interesting. For example, for a three level way, we

may be primarily interested in contrasting the dependent variable

mean of level-one subjects against the mean of level-three

subjects. Once this first contrast (-1, 0, +1 or +1, 0, -1) is

established, to be orthogonal the second contrast (-1, +2, -1 or

+1, +1) must test whether the dependent variable mean of the

level-two subjects differs from the mean of all the subjects in

either level one or level three of the way.

Some researchers find these possibilities very troubling. For

example, Huberty and Morris (1988, p. 576) argue that, "When a

researcher is specifying interesting contrasts, ortItogonality need

not be an issue. One should ask interesting questions, without

worrying about redundancy!"

Independent of the fact that experimentwise error is

indeterminently inflated when nonorthogonal contrasts are employed,

the primary problem with employing numerous nonorthogonal contrasts
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is that EW error may also be inflated to an unacceptable degree.

Although the number of orthogonal contrasts is limited by the

degrees of freedom for a given omnibus effect, in some research

situations many more nonorthogonal contrasts can be tested for the

same effect. The few researchers who have confronted this problem

have not yet satizZactorily resolved the issues involved.

Several researchers have suggested using a criterion of

reasonableness to decide when EW error inflation is unacceptably

high--these researchers have shown a propensity to tolerate

idiosyncratic definitions of reasonableness as against seeking a

consensus regarding an operational definition of acceptable limits.

For example, Huberty and Morris (1988, p. 573, emphasis added)

describe the roles they believe significance levels and effect

sizes should play in assessing contrast effects:

Jointly considering the two indicators, p and eta-

squared, one can arrive at a conclusion regarding

the existence of "real" (i.e., generalizable)

contrast effects. Real effects exist if 2 is "small"

and if eta-squared is "substantial." The

determination of a small R value and a substantial

eta-squared value is researcher- and situation-

dependent. (Of course, the number of contrasts being

investigated should be considered.) As in all of

statistical inference, subjective judgment cannot be

avoided. Neither can reasonableness! There are no

general rules or set criteria for being reasonable.
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Similarly, Miller (1966, p. 35, emphasis added) notes that

There are no hard-and-fast rules for where the

family lines should be drawn, and the statistician

must rely on his own judgment for the problem at

hand. Large single experiments cannot be treated as

a whole (family) without an unjustifiable loss in

sensitivity.

Unfortunately, subjective definitions of "reasonableness"

leave researchers with views of good practice that are not readily

commensurable, since no two researchers may agree on their choices

regarding what is and what is not reasonable. An approach which

emphasizes abstract reasonableness as the standard of practice

relies upon the good will and wisdom of the researcher with no

basis for determining who has effectively exercised either good

will or wisdom. Science does not progress very rapidly absent some

agreement regarding epistemology.

A first pass at establishing an acceptable upper limit on

inflation of experimentwise Type I error rate inflation might be

couched in the context of contemporary practice with classical OVA

procedures. Both experimentwise and effectwise limits might be

specified.

With respect to experimentwise limits, researchers using

balanced factorial OVA designs appear to be willing to tolerate

inflation of EW rates equal to the number of possible omnibus

tests. For example, for a 4x4x3x2 design, most researchers appear

to be willing to tolerate inflation of alpha=.05 to .5367 (1 - (1-
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.05)15, where 15 = 4 main effects + 6 two-way effects + 4 three-way

effects 4 1 four-way effect). Thus, under this uefinitinn, the

researcher would be limited to the use of 15 orthogonal contrasts,

unless an additive (p is divided by the number of tests--e.g.,

.05/15 = .003) or multiplicative Bonferroni correction was invoked

(Huberty, 1987).

Amore restrictive limit might be set at the effectwise level,

in order to be more conservative. The number of orthogonal

contrasts for an omnibus effect equals the number of degrees of

freedom for the. effect. For example, the "A" way in a 4x4x3x2

design has 3 degrees of freedom (4-1), so exactly three orthogonal

contrasts are possible. Table 7 presents the contrasts that might

be employed for the "A" way. The contrasts "01", "02" and "03" are

orthogonal. These three contrasts exactly restate (and only

restate) the information contained in the cell information column

titled "A". Thus, the multiple correlation (B) between "A" and

"01", "02", and "03" as a set is exactly 1.0.

INSERT TAbLE 7 ABOUT HERE:

As Kirk (1968) notes, most researchers do not adjust for

inflation of experimentwise error when they conduct orthogonal

planned tests. This suggests a rule that might be applied to decide

when to adjust for the EW inflation that occurs when nonorthogonal

planned tests are utilized: Once the multiple between

nonorthogonal contrasts an omnibus effect and the relevant cell

information exceeds 1.0, invoke a Bonferroni correction for EW
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inflation (Huberty, 1987). This would make the error rate inflation

fairly comparable across analytic choices, and would facilitate

generalization across the literature.

Table 7 illustrates the possibilities. The contrasts "Al" to

"A4" are nonorthogonal tests of differences within the "A" way of

the hypothetical 4x4x3x2 design. The multiple correlation between

"Al", "A2" and "A3" with the level assignment information ("A") is

1.0. Therefore, a researcher who also wished to test the null

hypothesis represented by contrast "A4" (i.e., that the dependent

variable mean of the subjects in level four equalled the mean of

the subjects in either level one or level two) would invoke the

correction. For example, each comparison might be tested at the

.0125 (.05/4) level of signif3 7ance.

These various considerations suggest a second canon regarding

analytic practice:

II. Given that orthogonal contrasts (a) yield known
testwise and everimontwise error rates, (b) tend to
yield less ambiguous results, and (c) invoke
partitioning of the sum of squares of the dependent
variable that is analogous to the orthogonal
partitioning invoked in classical OVA, planned
orthogonal contrasts should be employed when the
contrasts can be used to test the substantive
hypotheses of interest. When the use of nonorthogonal
contrasts becomes necessary, the researcher should
invoke Bonferroni corrections of testwise alpha when
the inflation of EN error exceeds the two limits
suggested here. In all cases effect size and
replicability analyses should be conducted to augment
the interpretation of significance testssuch
analyses focus on the primary focus in research
(generalization), are less starkly influenced by
sample size, and place error rate issues in proper
perspective.

The contrast proposed by Huberty and Morris (1988) appears to have
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special appeal, and warrants further investigation.

TYgaggiagnE lJtU'

There are two reasons why researchers generally prefer the use

of planned comparisons Co the use of unplanned comparisons (ct.

Benton, 1990; Tucker, 1990). First, as noted by numerous

researchers, planapcicsmr..r_powe actainstjoaking

Type II errors:

procedures recommended for Apri2xi orthogonal

comparisons are more powerful than procedures

recommended for a priori nonorthogonal and a

posteriori comparisons. That is, the former

procedures are more likely to detect real

differences among means. (Kirk, 1968, p. 95)

The probability of test's detecting that... [the

contrast's effect] is not zero [i.e., is

statistically significant] is greater with a planned

than with an unplanned comparison on the same sample

means. Thus, for any particular comparison, the test

is more powerful when planned than when post hoc.

(Hays, 1981, p. 438)

Post hoc tests protect us from making too many Type

I errors by requiring a bigger difference before

declaring it to be significant than do planned

comparisons. But this protection tends to be too
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conservative for planned comparisons, thereby

lowering the power of the test. (Minium & Clarke,

1982, p. 322)

The tests of significance for a priori, or planned,

comparisons are more powerful than those for post

hoc comparisons. In other words, it is possible for

a specific comparison to be not significant when

tested by post hoc methods but significant when

tested by a priori methods. (Pedhazur, 1982, pp.

304-305 (also Kerlinger & Pedhazur, 1973, p. 131))

Post hoc comparisons must always follow the finding

of a significant overall £- value... There are no

limits to the number of combinations that can be

tested post hoc, but none of these procedures has

the power of planned comparison tests for detecting

statistical significance. (Sowell & Casey, 1982, p.

119)

The test of planned subhypotheses is more powerful

than the test of post hoc subhypotheses. For this

reason, we should make planned comparisons whenever

possible in planning the design of research within

the ANOVA context. (Glasnapp & Poggio, 1985, p. 474)

Second, and perhaps even more importantly, planned comparisons
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tend to force the researcher to be more thoughtful in ,.ce_mltig_t_ing

research, since the number of planned comparisons that can be

tested is limited. The number of orthogonal planned comparisons

cannot exceed the degrees of freedom for an effect, as noted

previously. The number of nonorthogonal contrasts would also be

limited, if the canons suggested here were accepted.

As Snodgrass, Levy-Berger and Haydon (1985, p. 386) suggest,

"The experimenter who carries out post hoc comparisons often has

a rather diffuse hypothesis about what the effects of the

manipulation should be." Keppel (1982, p. 165) notes that, "Planned

comparisons are usually the motivating force behind an experiment.

These comparisons are targeted from the start of the investigation

and represent an interest in particular combinations of

conditions--not in the overall experiment." In summary, as

Kerlinger (1986, p. 219) suggests, "While post hoc tests are

important in actual research, especially for exploring one's data

and for getting leads for future research, the method of planned

comparisons is perhaps more important scientifically."

It is important to note that most researchers have fairly good

notions of what their studies will show, at least when research is

grounded in theoretical constructs or in previous empirical

findings, so most researchers are able to suggest planned

comparisons prior to data collection. Thus, Huberty and Morris

(1988, p. 576) maintain that

only very few research situations would preclude a

researcher from specifying all contrasts of interest
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prior to an examination of the outcome measures

and/or the outcome 'cell' means. (A typical set of

contrasts investigated consists of, simply, all

pairwise comparisons.)

Concrete Heuristic Examp a of Power
Just as some researchers benefit from seeing heuristic

demonstrations that all parametric significance testing procedures

are subsumed by and can be conducted with canonical correlation

analysis (Thompson, 1988a), it may be helpful to present a

hypothetical analysis demonstrating that planned orthogonal

comparisons have greater statistical power against Type II error

than testing omnibus hypotheses and then exploring significant

effects with unplanned comparisons. The data presented in Table 6

can be utilized for this purpose. Table 8 presents a conventional

one-way ANOVA keyout associated with the Table 6 data. Even if the

researcher conducted unplanned post hoc tests in the absence of a

statistically significant main effect, none of the unplanned tests

would result in a statistically significant comparison for these

data. However, as noted in Table 9, a statistically significant CD

< 0.01) result is isolated for the hypothesis that the mean

attitude-toward-school score of the two school board members

differs from the mean for the remaining 10 subjects.

INSERT TABLES 8 AND 9 ABOUT HERE.

The Use of Planned o a ns ieu o 0 nib ests

Some researchers suggest that at least some unplanned
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comparisons can be made even if an omnibus effect is not

statistically significant. For example, Spence, Cotton, Underwood

and Duncan (1983, p. 215) suggest that,

The Tukey hod [honestly significant difference test]

usually is performed only if the E obtained in the

analysis of variance is significant, but it

theoretically permissible to perform whatever the

significance of E.

Similarly, Hays (1981, p. 434) notes:

This statement is not to be interpreted to mean that

post hoc comparisons are somehow illegal or immoral

if the original test is not significant at the

required alpha level... What one cannot do is to

attach an unequivocal probability statement to such

post hoc comparisons, unless the conditions

underlying the method have been met.

However, the preponderant view regarding use of unplanned post hoc

tests is expressed by Gravetter and Wallnau (1985, p. 423):

These [ct posteriori] tests attempt to control the

overall alpha level by making the adjustments for

the number of different samples (potential

comparisons) in the experiment. To justify a

posteriori tests, the F-ratio from the overall ANOVA

must be significant.

On the other hand, with respect to the use of planned

comparisons, "Most statisticians agree that planned t tests between
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means are appropriate, even when the overall is insignificant"

(Clayton, 1984, p. 193). Snodgrass, Levy-Berger and Haydon (1985,

p. 386) concur:

For planned comparisons, it is not necessary for the

overall ANOVA to be significant in order to carry

them out... Post hoc comparisons, on the other hand,

may not be carried out unless the overall ANOVA is

significant.

Gravetter and Wallnau (1985, p. 423) agree that, "Planned

comparisons can be made even when the overall r-ratio is not

significant."

In fact, "It is not necessary to perform an over-all test of

significance prior to carrying out planned orthogonal t tests"

(Kirk, 1968, p. 73, emphasis added). As Hays (1981, p. 426)

suggests,

The F test gives evidence to let us judge if all of

a set of a - 1 such orthogonal comparisons are

simultaneously zero in the populations. For this

reason, if planned orthogonal comparisons are tested

separately, the overall f test is not carried out,

and vice versa.

Swaminathan (1989, p. 231, emphasis added) presents the same

argument with respect to the MANOVA case:

The often advocated procedure of following up the

rejection of the null hypothesis with a more

powerful multiple comparison procedure should be
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discouraged. First, the overall rejection of the

null hypothesis does not guarantee any meaningful

contrast among the means will be significant, as our

example showed. Second..., significant contrasts may

be found even when the null hypothesis would not

have been rejected. Third, follow up multiple

comparison procedures which are unrelated to the

overall test result in an inflation of the

experiment-wise error rate. If multiple comparisons

are of primary interest, a suitable multiple

comparison procedure can be used without first

performing an overall test.

These considerations suggest a third canon for analytic

practice:

III. Given that planned tests have greater power against
Type II error than either unplanned tests or omnibus
tests, planned comparisons should be employed inmost
research studies using OVA methods. Planned tests
should be employed in lieu of omnibus tests.

Rosnow and Rosenthal (1989, p. 1281) quite rightly deplore the

"overreliance on omnibus tests of diffuse hypotheses that although

providing protection for some investigators from the dangers of

'data mining' with multiple tests performed as if each were the

only one considered" because omnibus tests generally do not:

tell us anything we really want to know. As Abelson

(1962) pointed out long ago in the case of analysis

of variance (ANOVA), the problem is that when the

null hypothesis is accepted, it is frequently
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because of the insensitive omnibus character of the

standard F-test as much as by reason of sizable

error variance. All the while that a particular

predicted pattern among the means is evident to the

naked eye the standard F-test is often

insufficiently illuminating to reject the null

hypothesis that several means are statistically

identical.

Planned contrasts (Rosnow & Rosenthal, 1989, p. 1281) encourage

precision of thought and theory, and "usually result in increased

power and greater clarity of substantive interpretation."

Summa y

The literature zegarding the use of multiple comparisons in

analysis of variance was reviewed. Three analytic premises provided

a framework for the discussion. It was argued that experimentwise

Type I error rate inflation can be serious, and that its influences

are often unrecognized in many ANOVA applications. It was noted

that both classical balanced omnibus and orthogonal planned

contrast tests inflate experimentwise error to an identifiable

maximum. Finally, it was suggested that significance test results

are overinterpreted in contemporary analytic practice, and that

researchers must also consider effect sizes and replicability or

invariance analyses when formulating interpretations.

Three canons to guide analytic practice were suggested. First,

it was suggested that omnibus hypotheses that are not of interest

or which cannot be interpreted should not be tested, since such
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tests can distort the hypothesis tests that are of interest, as

illustrated with examples. Second, it is suggested that orthogonal

contrasts should be preferred over nonorthogonal contrasts, and

that when nonorthogonal contrasts must be used it may be necessary

to use a corrected testwise alpha level. Finally, it was suggested

that planned contrasts should be used in place of either omnibus

or unplanned hypothesis tests. Two reasons why planned comparisons

are generally superior were presented. Use of planned comparisons

tends to result in more thoughtful research with greater power

against Type II error. Throughout the paper small data sets and

examples were employed to make the discussion concrete.
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Table 1
All Possible Families of Outcomes
for a Fair Coin Flipped Three Times

Flip #
1 2 3

1 T : T : T
2. H : T :

1.1101MMO

T p of 1 or more H's (TW error analog)
3. T : H : T in set of 3 Flips = 7/8 = 87.5%
4. T : T : H
5. H : H : T or
6. H : T : H where TW error analog = .50,
7. T : H : H EW p = 1 -/1 - .5)3
8. H : H : H = 1 -.5 = 1-.125 = .875

p of H on
each Flip 50% 50% 50%

Table 2
Maximum Experimentwise Type I Error Inflation

1
1

- (

- (

1

TW
alpha

- 0.05
0.95

)

)

* *
* *

Tests

1
1

Experimentwise
alpha

a
1 - 0.95 = 0.05000

Range Over Testwise (TW) alpha = .01
1 - ( 1 - 0.01 ) ** 5 = 0.04901
1 ( 1 - 0.01 ) ** 10 = 5.09562
1 ( 1 - 0.01 ) ** 20 = 0.18209

Range Over Testwise (TW) alpha = .05
1 ( 1 - 0.05 ) ** 5 = 0.22622
1 - ( 1 - 0.05 ) ** 10 = 0.40126
1 ( 1 - 0.05 ) ** 20 = 0.64151

Range Over Testwise (TW) alpha = .10
1 - ( 1 - 0.10 ) ** 5 = 0.40951
1 ( 1 - 0.10 ) ** 10 = 0.65132
1 - ( 1 - 0.10 ) ** 20 = 0.87842

Note. "**" = "raise to the power of".

aThese calculations are presented (a) to illustrate the
implementation of the formula step by step and (b) to demonstrate
that when only one test is conducted, the experimentwise error rate
equals the testwise error rate, as should be expected if the
formula behaves properly.
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Table 3
An Example of How Factorial Analysis can Help
Yield Significance for Effects of Interest
by Analyzing Even Effects Not of Interest

Nonfactorial analysis
Source SOS df MS Fcalc Fcrit Dec

Main
Meth 7.4 1 7.4 4.144000 4.20 NS
Age 7.0 1 7.0 3.920000 4.20 NS
Sex 6.0 1 6.0 3.360000 4.20 NS

Residual 50.0 28 1.785714
Total 70.4 31

Factorial analysis
Source SOS df MS Fcalc Fcrit Dec

Main
Meth 7.4 1 7.4 5.92 4.26 Rej
Age 7.0 1 7.0 5.6 4.26 Rej
Sex 6.0 1 6.0 4.8 4.26 Rej

2-Way
Meth*Age 5.0 1 5.0 4.0 4.26 NS
Meth*Sex 5.0 1 5.0 4.0 4.26 NS
Age*Sex 5.0 1 5.0 4.0 4.26 NS

3-Way 5.0 1 5.0 4.0 4.26 NS
Residual 30.0 24 1.25
Total 70.4 31

Note. Entries in bold remain constant.
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Table 4
An Example of How Factorial Analysis can Hurt by Yielding

Nonsignificance for the Effects of Primary Interest

Nonfactorial analysis
Source SOS df MS Fcalc Fcrit Dec

Main
Meth 8.1 1 8.1 4.279245 4.20 Rej
Age 8.3 1 8.3 4.384905 4.20 Rej
Sex 8.0 1 8.0 4.226415 4.20 Rej

Residual 53.0 28 1.892857
Total 77.4 31

Factorial analysis
Source SOS df MS Fcalc Fcrit Dec

Main
Meth 8.1 1 8.1 3.888000 4.26 NS
Age 8.3 1 8.3 3.984000 4.26 NS
Sex 8.0 1 8.0 3.840000 4.26 NS

2-Way
Meth*Age (.5 1 0.5 0.240000 4.26 NS
Meth*Sex 1.0 1 1.0 0.480000 4.2b NS
Age*Sex 1.0 1 1.0 0.480000 4.26 NS

3-Way 0.5 1 0.5 0.240000 4.26 NS
Residual 50.0 24 2.083333
Total 77.4 31

Note. Entries in bold remain constant,

Table 5
Test of Mean Differences for School District Example

Z = ( M1 - M2 ) / (((SD1**2/ n1 ) + (SD2**2/ n2 )) ** .5)
Z = (100.15 - 99.85) / (((15**2 / 12000) + (l5 * *2 / 188000)) ** .5)

0.3 / ((( 225 / 12000) + ( 225 / 188000)) ** .5)
0.3 / (( 0.01875 0.001196 ) ** .5)
0.3 / ( 0.019946808 ** .5)
0.3 / 0.141233170

2.124146887
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Table 6
Hypothetical Data for Attitudes Toward School Study (n=12)

Group LEVEL ID DV Cl
Contrast

C2 C3 C4 C5
Students 1 1 10 -1 -1 -1 -1 -1

2 20 -1 -1 -1 -1 -1
Teacher Aides 2 3 10 1 -1 -1 -1 -1

4 20 1 -1 -1 -1 -1
Teachers 3 5 10 0 2 -1 -1 -1

6 20 0 2 -1 -1 -1
Principals 4 7 10 0 0 3 -1 -1

8 20 0 0 3 -1 -1
Superintendents 5 9 10 0 0 0 4 -1

10 20 0 0 0 4 -1
Board Members 6 11 25 0 0 0 0 5

12 35 0 0 0 0 5

Various
Table 7

Contrasts Used to Predict Cell Assignment

A 01 02 03
1 -1 -1 -1
2 1 -1 -1
3 0 2 -1
4 0 0 3

Al A2 A3 A4
-1 -1 -1 -1
1 0 -1 -1
0 -1 2 0
0 0 0 2

Note. RAx(01
,02,03) = 1.0 RAx(A1,A2,A3) = 1.0.

Source
Between
Error
Total

Contrast
Source

Cl
C2
C3
C4
C5

Error
Total

Table 8
One-Way ANOVA Results

SOS df
375.0000 5
300.0000 6
675.0000 11

Planned

SOS df
. 0000 1
.0000 1
. 0000 1
. 0000 1

375.0000 1
300.0000 6
675.0000 11

Mean
Square
75.0000
50.0000

F
1.5000

Table 9
Comparison Results

Mean
Square F

. 0000 0.0000

. 0000 0.0000

. 0000 0.0000

. 0000 0.0000
375.0000 12.5000
50.0000

45

p
.3155

in Way

eta
Square
.55556

eta
p Square

.00000

.00000

.00000

.00000
.0054 .55556



APPENDIX A
Selected SPSS-X Control Cards

TITLE ' * * ** *OMNIBUS no POSTHOC no A PRIORI yes'
FILE HANDLE BT/NAME='APRIORI.DTA'
DATA LIST FILE=BT/LEV 1 DV 2-4
COMPUTE C1=0
COMPUTE C2=0
COMPUTE C3=0
COMPUTE C4=0
COMPUTE C5=0
IF (LEV EQ 2)C1=1
IF (LEV EQ 1)C1=-1
IF (LEV EQ 3)C2=2
IF (LEV EQ 1 OR LEV EQ 2) C2=-1
IF (LEV EQ 4)C3=3
IF (LEV LT 4)C3=-1
IF (LEV EQ 5)C=4
IF (LEV LT 5)CA=-1
IF (LEV EQ 6) C;.-
IF (C5 EQ 0)C5=-1
REGRESSION VARIABLES=DV Cl TO C5/DESCRIPTIVES=ALL/
CRITERIA=PIN(.95) POUT(.999) TOLERANCE(.00001)/DEPENDENT=DV/
ENTER C5/ENTER C4/ENTER C3/ENTER C2/ENTER C1/
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